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In this paper we solve the following Ulam problem: "Give conditions in order for
a linear mapping near an approximately linear mapping to exist" and establish
results involving a product of powers of norms [So M. Ulam, "A Collection of
Mathematical Problems," Interscience, New York, 1961; "Problems in Modern
Mathematics," Wiley, New York, 1964; "Sets, Numbers, and Universes," MIT
Press, Cambridge, MA, 1974]. There has been much activity on a similar ..
~-isometry" problem of Ulam [1. Gervirtz, Proc. Amer. Math. Soc. 89 (1983),
633-636; P. Gruber, Trans. Amer. Math. Soc. 245 (1978), 263-277; J. Lindenstrauss
and A. Szankowski, "Non-linear Perturbations of Isometries," Colloquium in honor
of Laurent Schwartz, Vol. I, Palaiseau, 1985]. This work represents an improve­
ment and generalization of the work of D. H. Hyers [Proc. Nat. Acad. Sci USA 27
(1941),222-224]. © 1989 Academic Press. Inc.

THEOREM. Let X be a normed linear space with norm II . III and let Y be
a Banach space with norm II· 112' Assume in addition that f: X --+ Y is a
mapping such that f( t . x) is continuous in t for each fixed X. If there exist
a, b, 0 ~ a + b < 1, and C 2 ~ 0 such that

Ilf(x + y) - [f(x) + f(Y)]112 ~ C2 '1Ixll~ ·11 Yilt (1 )

for all x, Y E X, then there exists a unique linear mapping L: X --+ Y such that

Ilf(x) - L(x)112 ~ C '1Ixll~+b (2)

for all XEX, where c=c2/(2-2 a + b
).

If one takes a = b = 0 in this theorem and follows our proof, one obtains
an additive functional L such that Ilf(x) - L(x)112 ~ C2, for all x in X. This
is Hyer's result [3].

Proof of EXistence. Inequality (1) and y = x imply

Ilf(2x) - 2f(x)112 ~ C2 . Ilxll ~+ b,
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Ilf(2x)/2 - f(x)112 :( C2 ·llxll ~+ b/2.

More generally, the following lemma holds.

LEMMA 1. In the space X,
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(3 )

n-I

Ilf(2 nx)/2 n
- f(x)112:( C2' L 2i(u+h-l)-1 '1Ixll~+b (4)

i~O

for some C2 ~ 0 and for any integer n.

To prove Lemma 1 we proceed by induction on n.
For n = 1, the result is obvious from (3). We assume then that (4) holds

for n = k and prove that (4) is true for n = k + 1. Indeed, from (4) and n = k
and 2 .x = z we find:

k-l

Ilf(2 k z)/2k
- f(z)112:(c 2 L 2i(U+b-I)-1'llzll~+h,

i~O

or

k-I

Ilf(2 k + I 'X)/2 k + l
- f(2x)/2112:(C2' L 2(i+l).(u+b-ll-l·llxll~+h,

i~O

or

k

Ilf(2 k + I .x)/2k + 1- f(2x)/2112:( C2 L 2i(u+b-I)-1 ·llxll~+b. (5)
i=1

Therefore from (3) and (4) we get

IIf(2 k + 1x)/2k + l
- f(x)112

:( Ilf(2 k + 1. x)/2k + 1- f(2x)/2112 + Ilf(2x)/2 - f(x)112

k

:( c2 · L 2i(u+b- 1l-1 '1Ixll~+b+ C2·llxll~+h. 2- 1
i~ I

k

=c2 · L 2i(U+b-\)-I'llxll~+b,

i=O

or (4) holds for n = k + 1, or

k

Ilf(2 k + I .x)/2k + 1- f(x)112:( C2 L 2i(u+h- l l-1 ·llxll~+b. (6)
i=O
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,,-I xc 1
" 2i(a+b-l)<" 2i(a+b-l)= =c . (7)
L.. L.. 1_2a+b-1 0

i=O i=O

(7 )'

It is clear that (3) and (6) yield (4), completing the proof of Lemma 1.
Then Lemma 1, (7), and (7)' imply

Ilf(2" .x)/2" - f(x)112 ~ c· Ilxll ~+b

for any x E X, any positive integer n, and some C2 ~ O.

(8)

LEMMA 2. The sequence {f(2". x)/2"} converges.

We first use (8) and the completeness of Y to prove that the sequence
{f(2" .x)/2"} is a Cauchy sequence. In fact, if i > j > 0, then

and if we set 2) . x = h in (9) and employ (8) we get

Ilf(2 i
. x)/2 i

- f(2) . x)/2)112

= 2-) ·llf(2ix)/2 i -) - f(h)112 < 2) (a+b-l). c· Ilxll ~+b

or

lim Ilf(2'x)/2' - f(2) .x)/2) 112 = 0
.J....-.+ oc:

( 10)

because a, b: 0 ~ a + b < 1.
It is obvious now from (10) and the completeness of Y that the sequence

{f(2" .x)/2"} converges and therefore the proof of Lemma 2 is complete.
We set

. f(2"·x)
L(x)= lim 2" .

,,~ 00

(11 )

It is clear from (1) and (11) that

Ilf(2"·x + 2"· y)- [/(2" ·x) + f(2"· y)]I12 ~ C2·112" ,xll~ ·112"· YIIL

or

2-" ·llf(2"·x + 2"· y) - [/(2" ·x) + f(2"· y)]112

~C2 ·2(a+b-l)"·llxll~ ·1IY117,
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or

II lim [f(2 n·(x+y))/2n]- lim [f(2 n·x)/2n]
n-oo n-oo

- lim [f(2n. y )/2n] 112 = 0,

or
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IIL(x + y) - L(x) - L(y)112 =°
or

L(x + y) = L(x) + L(y)

From (12) we get

for any x, y E X,

for any x, y E X. (12)

L(q· x) = q. L(x)

for any q E Q, where Q is the set of rationals.

(13)

LEMMA 3. Let Y+ be the space of continuous linear functionals and
consider the mapping

such that

T: t ~ g(L(t· x)), or (14 )

T( t) = g(L( t . x) ), (15 )

where g E Y+, t E IR, and x E X, x := fixed. Then T is a continuous mapping.

To prove Lemma 3 we proceed as follows: Let

such that

T(t) = lim Tn(t),
n ----I> cc

(16 )

(17)

where x E X, x := fixed and t E IR, g E Y+.
Then Tn(t) are continuous and therefore T is measurable as the

pointwise limit of continuous mappings Tn' Moreover, T is a
homomorphism with respect to addition "+," that is,

T(x + y) = T(x) + T(y) (18)

for any x, y E IR. It is clear now that (18) and the measurability of T imply
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that T is a continuous mapping and thus the proof of Lemma 3 is
complete.

Then Lemma 3 and the fact that Y+ separates points of Y yield the
linearity of L. However, if we take limits on both sides of (8) as n ~ 00 we
obtain (2). Therefore, we have proved the existence of a linear mapping
L: X -+ Y which also satisfies (2).

Uniqueness. It remains to show the uniqueness part of our theorem.

Let M be a linear mapping M: X -+ Y, such that

Ilf(x)- M(x)112 ~ c' ·llxllf'+b', c'~O, (19)

for any x E X where a', b': 0 ~ a' + b' < 1 and c' is a constant. If there exists
a linear mapping L: X -+ Y such that (2) holds, then

L(x)= M(x)

for any XE X.

To prove (20) we must prove the following

(20)

LEMMA 4. If (2) and (19) hold, then

IIL(x)-M(x)112~ma+b-l·c·llxll~+b+ma'+b'-1·c' ·llxllr+ b' (21)

for any xEX.

The required result (21) follows immediately if we use inequalities (2)
and (19), the linearity of Land M, as well as the triangle inequality. In
fact,

M(x) = M(m .x),
m

IIL(m ·x)- M(m ,x)112 ~ L(m ·x) - f(m ,x)112 + IIM(m ·x) - f(m ,x)h Then
if we apply (2) and (19) we obtain inequality (21) and the proof of
Lemma 4 is complete.

It is clear now that (21) implies limm~ooIIL(x)-M(x)112=0 for any
x E X, completing the proof of (20). Thus the uniqueness part of our
Theorem is complete, as well.

Remark. A Banach space Y is said to have the approximation property
if for any compact set KeY and any e > 0, there exists P E L( Y, Y)
depending on K and e, with finite-dimensional range such that

IIP(x)-xll ~e

for any XEK.
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The approximation problem states: Is every compact operator T in
L(X, Y) a limit in the norm of operators with finite dimensional range?

The approximation problem has a negative solution in Banach spaces
(which are not Hilbert spaces) and was solved in the negative by Per Enflo
(1973) via an example of a separable reflexive Banach space that does not
have the approximation property.

Query. What is the situation in the above theorem in case a + b = 1?
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