Solution of a Problem of Ulam

John M. Rassias
The American College of Greece, Department of Mathematics, Aghia Paraskevi, Attikis, Greece
Communicated by Garrett Birkhoff

Received April 30, 1986

Abstract

In this paper we solve the following Ulam problem: "Give conditions in order for a linear mapping near an approximately linear mapping to exist" and establish results involving a product of powers of norms [S. M. Ulam, "A Collection of Mathematical Problems," Interscience, New York, 1961; "Problems in Modern Mathematics," Wiley, New York, 1964; "Sets, Numbers, and Universes," MIT Press, Cambridge, MA, 1974]. There has been much activity on a similar " ع-isometry" problem of Ulam [J. Gervirtz, Proc. Amer. Math. Soc. 89 (1983), 633-636; P. Gruber, Trans. Amer. Math. Soc. 245 (1978), 263-277; J. Lindenstrauss and A. Szankowski, "Non-linear Perturbations of Isometries," Colloquium in honor of Laurent Schwartz, Vol. I, Palaiseau, 1985]. This work represents an improvement and generalization of the work of D. H. Hyers [Proc. Nat. Acad. Sci USA 27 (1941), 222-224]. © 1989 Academic Press, Inc.

Theorem. Let X be a normed linear space with norm $\|\cdot\|_{1}$ and let Y be a Banach space with norm $\|\cdot\|_{2}$. Assume in addition that $f: X \rightarrow Y$ is a mapping such that $f(t \cdot x)$ is continuous in t for each fixed x. If there exist $a, b, 0 \leqslant a+b<1$, and $c_{2} \geqslant 0$ such that

$$
\begin{equation*}
\|f(x+y)-[f(x)+f(y)]\|_{2} \leqslant c_{2} \cdot\|x\|_{1}^{a} \cdot\|y\|_{1}^{b} \tag{1}
\end{equation*}
$$

for all $x, y \in X$, then there exists a unique linear mapping $L: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-L(x)\|_{2} \leqslant c \cdot\|x\|_{1}^{a+b} \tag{2}
\end{equation*}
$$

for all $x \in X$, where $c=c_{2} /\left(2-2^{a+b}\right)$.
If one takes $a=b=0$ in this theorem and follows our proof, one obtains an additive functional L such that $\|f(x)-L(x)\|_{2} \leqslant c_{2}$, for all x in X. This is Hyer's result [3].

Proof of Existence. Inequality (1) and $y=x$ imply

$$
\|f(2 x)-2 f(x)\|_{2} \leqslant c_{2} \cdot\|x\|_{1}^{a+b},
$$

or

$$
\begin{equation*}
\|f(2 x) / 2-f(x)\|_{2} \leqslant c_{2} \cdot\|x\|_{1}^{a+b} / 2 \tag{3}
\end{equation*}
$$

More generally, the following lemma holds.
Lemma 1. In the space X,

$$
\begin{equation*}
\left\|f\left(2^{n} x\right) / 2^{n}-f(x)\right\|_{2} \leqslant c_{2} \cdot \sum_{i=0}^{n-1} 2^{i(a+b-1)-1} \cdot\|x\|_{1}^{a+b} \tag{4}
\end{equation*}
$$

for some $c_{2} \geqslant 0$ and for any integer n.
To prove Lemma 1 we proceed by induction on n.
For $n=1$, the result is obvious from (3). We assume then that (4) holds for $n=k$ and prove that (4) is true for $n=k+1$. Indeed, from (4) and $n=k$ and $2 \cdot x=z$ we find:

$$
\left\|f\left(2^{k} z\right) / 2^{k}-f(z)\right\|_{2} \leqslant c_{2} \sum_{i=0}^{k-1} 2^{i \cdot(a+b-1)-1} \cdot\|z\|_{1}^{a+b},
$$

or

$$
\left\|f\left(2^{k+1} \cdot x\right) / 2^{k+1}-f(2 x) / 2\right\|_{2} \leqslant c_{2} \cdot \sum_{i=0}^{k-1} 2^{(i+1) \cdot(a+b-1)-1} \cdot\|x\|_{1}^{a+b}
$$

or

$$
\begin{equation*}
\left\|f\left(2^{k+1} \cdot x\right) / 2^{k+1}-f(2 x) / 2\right\|_{2} \leqslant c_{2} \sum_{i=1}^{k} 2^{i(a+b-1)-1} \cdot\|x\|_{1}^{a+b} \tag{5}
\end{equation*}
$$

Therefore from (3) and (4) we get

$$
\begin{aligned}
& \left\|f\left(2^{k+1} x\right) / 2^{k+1}-f(x)\right\|_{2} \\
& \quad \leqslant\left\|f\left(2^{k+1} \cdot x\right) / 2^{k+1}-f(2 x) / 2\right\|_{2}+\|f(2 x) / 2-f(x)\|_{2} \\
& \quad \leqslant c_{2} \cdot \sum_{i=1}^{k} 2^{i(a+b-1)-1} \cdot\|x\|_{1}^{a+b}+c_{2} \cdot\|x\|_{1}^{a+b} \cdot 2^{-1} \\
& \quad=c_{2} \cdot \sum_{i=0}^{k} 2^{i(a+b-1)-1} \cdot\|x\|_{1}^{a+b},
\end{aligned}
$$

or (4) holds for $n=k+1$, or

$$
\begin{equation*}
\left\|f\left(2^{k+1} \cdot x\right) / 2^{k+1}-f(x)\right\|_{2} \leqslant c_{2} \sum_{i=0}^{k} 2^{i(a+b-1)-1} \cdot\|x\|_{1}^{a+b} . \tag{6}
\end{equation*}
$$

But

$$
\begin{equation*}
\sum_{i=0}^{n-1} 2^{i(a+b-1)}<\sum_{i=0}^{\infty} 2^{i(a+b-1)}=\frac{1}{1-2^{a+b-1}}=c_{0} \tag{7}
\end{equation*}
$$

Set

$$
\begin{equation*}
c=c_{0} \cdot c_{2} / 2 \tag{7}
\end{equation*}
$$

It is clear that (3) and (6) yield (4), completing the proof of Lemma 1.
Then Lemma 1, (7), and (7)' imply

$$
\begin{equation*}
\left\|f\left(2^{n} \cdot x\right) / 2^{n}-f(x)\right\|_{2} \leqslant c \cdot\|x\|_{1}^{a+b} \tag{8}
\end{equation*}
$$

for any $x \in X$, any positive integer n, and some $c_{2} \geqslant 0$.
Lemma 2. The sequence $\left\{f\left(2^{n} \cdot x\right) / 2^{n}\right\}$ converges.
We first use (8) and the completeness of Y to prove that the sequence $\left\{f\left(2^{n} \cdot x\right) / 2^{n}\right\}$ is a Cauchy sequence. In fact, if $i>j>0$, then

$$
\begin{equation*}
\left\|f\left(2^{i} \cdot x\right) / 2^{i}-f\left(2^{j} \cdot x\right) / 2^{j}\right\|_{2}=2^{-j} \cdot\left\|f\left(2^{i} \cdot x\right) / 2^{i-j}-f\left(2^{j} \cdot x\right)\right\|_{2} \tag{9}
\end{equation*}
$$

and if we set $2^{j} \cdot x=h$ in (9) and employ (8) we get

$$
\begin{aligned}
& \left\|f\left(2^{i} \cdot x\right) / 2^{i}-f\left(2^{j} \cdot x\right) / 2^{j}\right\|_{2} \\
& \quad=2^{-j} \cdot\left\|f\left(2^{i} x\right) / 2^{i-j}-f(h)\right\|_{2}<2^{j \cdot(a+b-1)} \cdot c \cdot\|x\|_{1}^{a+b}
\end{aligned}
$$

or

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|f\left(2^{i} x\right) / 2^{i}-f\left(2^{j} \cdot x\right) / 2^{j}\right\|_{2}=0 \tag{10}
\end{equation*}
$$

because $a, b: 0 \leqslant a+b<1$.
It is obvious now from (10) and the completeness of Y that the sequence $\left\{f\left(2^{n} \cdot x\right) / 2^{n}\right\}$ converges and therefore the proof of Lemma 2 is complete.

We set

$$
\begin{equation*}
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} \cdot x\right)}{2^{n}} \tag{11}
\end{equation*}
$$

It is clear from (1) and (11) that

$$
\left\|f\left(2^{n} \cdot x+2^{n} \cdot y\right)-\left[f\left(2^{n} \cdot x\right)+f\left(2^{n} \cdot y\right)\right]\right\|_{2} \leqslant c_{2} \cdot\left\|2^{n} \cdot x\right\|_{1}^{a} \cdot\left\|2^{n} \cdot y\right\|_{1}^{b},
$$

or

$$
\begin{aligned}
& 2^{-n} \cdot\left\|f\left(2^{n} \cdot x+2^{n} \cdot y\right)-\left[f\left(2^{n} \cdot x\right)+f\left(2^{n} \cdot y\right)\right]\right\|_{2} \\
& \quad \leqslant c_{2} \cdot 2^{(a+b-1) n} \cdot\|x\|_{1}^{a} \cdot\|y\|_{1}^{b},
\end{aligned}
$$

or

$$
\begin{aligned}
\| \lim _{n \rightarrow \infty} & {\left[f\left(2^{n} \cdot(x+y)\right) / 2^{n}\right]-\lim _{n \rightarrow \infty}\left[f\left(2^{n} \cdot x\right) / 2^{n}\right] } \\
& -\lim _{n \rightarrow \infty}\left[f\left(2^{n} \cdot y\right) / 2^{n}\right] \|_{2}=0
\end{aligned}
$$

or

$$
\|L(x+y)-L(x)-L(y)\|_{2}=0 \quad \text { for any } \quad x, y \in X
$$

or

$$
\begin{equation*}
L(x+y)=L(x)+L(y) \quad \text { for any } \quad x, y \in X . \tag{12}
\end{equation*}
$$

From (12) we get

$$
\begin{equation*}
L(q \cdot x)=q \cdot L(x) \tag{13}
\end{equation*}
$$

for any $q \in Q$, where Q is the set of rationals.
Lemma 3. Let Y^{+}be the space of continuous linear functionals and consider the mapping

$$
\begin{equation*}
T: t \rightarrow g(L(t \cdot x)), \quad \text { or } \quad T: \mathbb{R} \rightarrow \mathbb{R} \tag{14}
\end{equation*}
$$

such that

$$
\begin{equation*}
T(t)=g(L(t \cdot x)) \tag{15}
\end{equation*}
$$

where $g \in Y^{+}, t \in \mathbb{R}$, and $x \in X, x:=$ fixed. Then T is a continuous mapping.
To prove Lemma 3 we proceed as follows: Let

$$
\begin{equation*}
T_{n}(t)=g\left(\frac{f\left(2^{n} \cdot x \cdot t\right)}{2^{n}}\right) \tag{16}
\end{equation*}
$$

such that

$$
\begin{equation*}
T(t)=\lim _{n \rightarrow \infty} T_{n}(t) \tag{17}
\end{equation*}
$$

where $x \in X, x:=$ fixed and $t \in \mathbb{R}, g \in Y^{+}$.
Then $T_{n}(t)$ are continuous and therefore T is measurable as the pointwise limit of continuous mappings T_{n}. Moreover, T is a homomorphism with respect to addition " + ," that is,

$$
\begin{equation*}
T(x+y)=T(x)+T(y) \tag{18}
\end{equation*}
$$

for any $x, y \in \mathbb{R}$. It is clear now that (18) and the measurability of T imply
that T is a continuous mapping and thus the proof of Lemma 3 is complete.

Then Lemma 3 and the fact that Y^{+}separates points of Y yield the linearity of L. However, if we take limits on both sides of (8) as $n \rightarrow \infty$ we obtain (2). Therefore, we have proved the existence of a linear mapping $L: X \rightarrow Y$ which also satisfies (2).

Uniqueness. It remains to show the uniqueness part of our theorem.
Let M be a linear mapping $M: X \rightarrow Y$, such that

$$
\begin{equation*}
\|f(x)-M(x)\|_{2} \leqslant c^{\prime} \cdot\|x\|_{1}^{a^{\prime}+b^{\prime}}, \quad c^{\prime} \geqslant 0 \tag{19}
\end{equation*}
$$

for any $x \in X$ where $a^{\prime}, b^{\prime}: 0 \leqslant a^{\prime}+b^{\prime}<1$ and c^{\prime} is a constant. If there exists a linear mapping $L: X \rightarrow Y$ such that (2) holds, then

$$
\begin{equation*}
L(x)=M(x) \tag{20}
\end{equation*}
$$

for any $x \in X$.
To prove (20) we must prove the following
Lemma 4. If (2) and (19) hold, then

$$
\begin{equation*}
\|L(x)-M(x)\|_{2} \leqslant m^{a+b-1} \cdot c \cdot\|x\|_{1}^{a+b}+m^{a^{\prime}+b^{\prime}-1} \cdot c^{\prime} \cdot\|x\|_{1}^{a^{\prime}+b^{\prime}} \tag{21}
\end{equation*}
$$

for any $x \in X$.
The required result (21) follows immediately if we use inequalities (2) and (19), the linearity of L and M, as well as the triangle inequality. In fact,

$$
L(x)=\frac{L(m \cdot x)}{m}, \quad M(x)=\frac{M(m \cdot x)}{m}
$$

$\|L(m \cdot x)-M(m \cdot x)\|_{2} \leqslant L(m \cdot x)-f(m \cdot x)\left\|_{2}+\right\| M(m \cdot x)-f(m \cdot x) \|_{2}$. Then if we apply (2) and (19) we obtain inequality (21) and the proof of Lemma 4 is complete.

It is clear now that (21) implies $\lim _{m \rightarrow \infty}\|L(x)-M(x)\|_{2}=0$ for any $x \in X$, completing the proof of (20). Thus the uniqueness part of our Theorem is complete, as well.

Remark. A Banach space Y is said to have the approximation property if for any compact set $K \subset Y$ and any $\varepsilon>0$, there exists $P \in L(Y, Y)$ depending on K and ε, with finite-dimensional range such that

$$
\|P(x)-x\| \leqslant \varepsilon
$$

for any $x \in K$.

The approximation problem states: Is every compact operator T in $L(X, Y)$ a limit in the norm of operators with finite dimensional range?
The approximation problem has a negative solution in Banach spaces (which are not Hilbert spaces) and was solved in the negative by Per Enflo (1973) via an example of a separable reflexive Banach space that does not have the approximation property.

Query. What is the situation in the above theorem in case $a+b=1$?

References

1. J. Gervirtz, Stability of isometries on Banach spaces, Proc. Amer. Math. Soc. 89 (1983), 633-636.
2. P. Gruber, Stability of isometries, Trans. Amer. Math. Soc. 245 (1978), 263-277.
3. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222-224.
4. J. Lindenstrauss and A. Szankowski, "Non-linear Perturbations of Isometries," Colloquium in honor of Laurent Schwartz, Vol. I, Palaiseau, 1985.
5. S. M. Ulam, "A Collection of Mathematical Problems," Interscience, New York, 1961; "Problems in Modern Mathematics", Wiley, New York, 1964; "Sets, Numbers, and Universes," MIT Press, Cambridge, MA, 1974.
